来自 Theory and problems for senior high math
Functions 函数
The next concern is to find out what kind of relations are functions. First, a function is defined as follows:"For every value of the domain(x-value) there is one and only one value for the range(y-value)." What does this mean? It says any x-value can only have one y value. For example:
下一項重要的事是找出函數是怎樣的關係。首先,函數可以定義為:“對於定義域內每一個x值,有且只有值域內的一個y值與其相對應。” 這是什麼意思呢?它是說每個x值只能有一個y值。如以下例子:
a) (1,3), (2,4), (3,-1) is a function because each x-value 1, 2, 3 has only one value for y.
(1,3), (2,4), (3,-1)是函數因為每個x值1,2,3只有一個y值。
b) (1,3), (-1,3), (2,4)is a function.
(1,3), (-1,3), (2,4)是函數。
c) (1,3), (1,2), (4,5) is not a function because x=1 gives y=2 and y=3, i.e., two values.
(1,3), (1,2), (4,5)不是函數因為x=1時,y=2並且y=3,有兩個值。
If "y" is an even power, then it can't be a function, e.g.,
X2+y2=9, y=±√(9-x2), (two values of y for each x value). If you can graph the equation, then remember the vertical line test: any vertical line can only cross the graph once if it is a function.
如果y是偶次方的話,那麼他不可能成為函數,例如X2+y2=9, y=±√(9-x2)(有兩個y值對應每個x值)。如果你可以畫出函數圖像的話,記得垂直線測試:如果他是函數,任何一條垂直線只能與其圖形有一個交點。
如果y是偶次方的話,那麼他不可能成為函數,例如X2+y2=9, y=±√(9-x2)(有兩個y值對應每個x值)。如果你可以畫出函數圖像的話,記得垂直線測試:如果他是函數,任何一條垂直線只能與其圖形有一個交點。
Share to see the next post fast! ^ ^
想快點看到下一篇?快點擊分享吧!^ ^
No comments:
Post a Comment